A Large Scale Arabic Sentiment Lexicon for Arabic Opinion Mining
نویسندگان
چکیده
Most opinion mining methods in English rely successfully on sentiment lexicons, such as English SentiWordnet (ESWN). While there have been efforts towards building Arabic sentiment lexicons, they suffer from many deficiencies: limited size, unclear usability plan given Arabic’s rich morphology, or nonavailability publicly. In this paper, we address all of these issues and produce the first publicly available large scale Standard Arabic sentiment lexicon (ArSenL) using a combination of existing resources: ESWN, Arabic WordNet, and the Standard Arabic Morphological Analyzer (SAMA). We compare and combine two methods of constructing this lexicon with an eye on insights for Arabic dialects and other low resource languages. We also present an extrinsic evaluation in terms of subjectivity and sentiment analysis.
منابع مشابه
حسنگار : شبکه واژگان حسی فارسی
Awareness of others' opinions plays a crucial role in the decision making process performed by simple customers to top-level executives of manufacturing companies and various organizations. Today, with the advent of Web 2.0 and the expansion of social networks, a vast number of texts related to people's opinions have been created. However, exploring the enormous amount of documents, various opi...
متن کاملA Light Lexicon-based Mobile Application for Sentiment Mining of Arabic Tweets
Most advanced mobile applications require server-based and communication. This often causes additional energy consumption on the already energy-limited mobile devices. In this work, we provide to address these limitations on the mobile for Opinion Mining in Arabic. Instead of relying on compute-intensive NLP processing, the method uses an Arabic lexical resource stored on the device. Text is st...
متن کاملArabic Opinion Mining Using Combined Classification Approach
In this paper, we present a combined approach that automatically extracts opinions from Arabic documents. Most research efforts in the area of opinion mining deal with English texts and little work with Arabic text. Unlike English, from our experiments, we found that using only one method on Arabic opinioned documents produce a poor performance. So, we used a combined approach that consists of ...
متن کاملA Machine Learning Approach For Opinion Holder Extraction In Arabic Language
Opinion mining aims at extracting useful subjective information from reliable amounts of text. Opinion mining holder recognition is a task that has not been considered yet in Arabic Language. This task essentially requires deep understanding of clauses structures. Unfortunately, the lack of a robust, publicly available, Arabic parser further complicates the research. This paper presents a leadi...
متن کاملSemantic Feature Based Arabic Opinion Mining Using Ontology
with the increase of opinionated reviews on the web, automatically analyzing and extracting knowledge from those reviews is very important. However, it is a challenging task to be done manually. Opinion mining is a text mining discipline that automatically performs such a task. Most researches done in this field were focused on English texts with very limited researches on Arabic language. This...
متن کامل